巨力光電(北京)科技有限公司

昆明理工陳江照Adv. Sci.:效率25.46%!小分子MSR多級(jí)調(diào)控策略實(shí)現(xiàn)高性能鈣鈦礦太陽能電池

發(fā)表時(shí)間:2024-12-16 13:32

標(biāo)圖.png

主要內(nèi)容
鈣鈦礦太陽能電池(PSCs)被視為下一代光伏技術(shù)的理想候選者,然而,其廣泛應(yīng)用卻面臨著諸多挑戰(zhàn),包括無法控制的快速結(jié)晶、陷阱輔助的非輻射復(fù)合以及低效的電荷傳輸?shù)?。為了克服這些難題,昆明理工大學(xué) 陳江照教授等帶領(lǐng)其團(tuán)隊(duì)提出了一種創(chuàng)新的多級(jí)調(diào)控(MSR)策略。該策略的核心在于將具有多個(gè)活性位點(diǎn)的小分子——1-[雙(三氟甲磺酰)甲基]-2,3,4,5,6-五氟苯(TFSP)巧妙地引入鈣鈦礦薄膜的前驅(qū)體溶液中。通過加入TFSP,成功地延緩并精細(xì)調(diào)控了鈣鈦礦薄膜的結(jié)晶和生長(zhǎng)過程,從而形成了更大的晶粒,顯著減少了缺陷,并大幅提高了自組裝分子的覆蓋率,進(jìn)而實(shí)現(xiàn)了高效的電荷傳輸。此外,TFSP的多個(gè)活性位點(diǎn)使其與鈣鈦礦薄膜中未配位的缺陷產(chǎn)生了強(qiáng)烈的結(jié)合親和力,而其高氟含量則賦予了其強(qiáng)烈的電負(fù)性,進(jìn)一步增強(qiáng)了鈣鈦礦薄膜與電子傳輸層之間的結(jié)合強(qiáng)度。


*終,采用MSR策略制備的鈣鈦礦太陽能電池展現(xiàn)出了高達(dá)25.46%的**光電轉(zhuǎn)換效率(PCE),并且在非封裝條件下、相對(duì)濕度為45%的環(huán)境中,經(jīng)過長(zhǎng)達(dá)3000小時(shí)的測(cè)試后,仍保持了初始PCE的91.16%。這一**的結(jié)果充分驗(yàn)證了所提出的多級(jí)調(diào)控策略的有效性。它不僅顯著改善了鈣鈦礦太陽能電池(PSC)的結(jié)晶度、抑制了缺陷、增強(qiáng)了界面接觸并降低了能級(jí)失配,從而大幅提升了PSC的性能,還展現(xiàn)出了更優(yōu)的質(zhì)量和穩(wěn)定性,降低了層間載流子損失和非輻射復(fù)合強(qiáng)度,并加快了界面載流子提取速度。因此,所提出的多級(jí)調(diào)控策略無疑為提升鈣鈦礦光伏器件的性能并推動(dòng)其更廣泛應(yīng)用提供了一種新穎且簡(jiǎn)便的方法。



1.jpg

Figure 1

a) Reaction coordinate diagram of formation paths for different perovskite intermediates in DMF. b) Binding energies of MeO–4PACz dimer, MeO–4PACz tetramer, and MeO–4PACz dimer with TFSP. c) Interactions of different configurations of TFSP with the perovskite surface: i) perpendicular to the perovskite surface with the benzene ring above, ii) perpendicular to the perovskite surface with the benzene ring below, and iii) parallel to the perovskite surface; iv) side view of the interactions of TFSP (dashed ovals) with the Pb/I terminated (001) FAPbI3 surface. PbI6octahedra are highlighted to show that major structural relaxation was mostly observed in the uppermost layer. Changes in the charge-density profile around all species involved in the TFSP–surface binding include prominent charge accumulation (yellow) and depletion (blue) regions indicating F─Pb and O─Pb interactions. d) Binding of perovskite layers with and without TFSP to PCBM in the ETL.



2.jpg


Figure 2
Comparison between control and target films: a, b) in situ PL maps, c, d) in situ UV-vis intensity of 700 nm, e, f) top-view Scanning electron microscopy (SEM) images.


3.jpg


Figure 3

ToF-SIMS of a) control and b) target films. c, f) GIXRD with different ψ angles (10–50°) at a depth of ≈200 nm. 2D GIWAXS maps of d) control and e) target films. cAFM maps of g) control and h) target films. (i) Current as a function of distance for the control and target films obtained from the cAFM maps.

4.jpg

Figure 4
a) Projected density of states of the VI defective perovskite slab passivated without and with TFSP. Transient absorption (TA) spectra at different delay times for the b) control and c) target films. d) Steady-state PL spectra and e) TRPL decay curves of the control and target films. f) Ultraviolet photoelectron spectroscopy (UPS) spectra of secondary-electron cutoff (left) and valence band (right) regions for the control and target films. g) Energy-level alignment of ITO/MeO-4PACz/perovskite with and without TFSP/PCBM/Ag. g) TPV and h) TPC decay curves of control and target films.


5.jpg


Figure 5
a) Photocurrent density?voltage (J?V) curves and b) steady-state output of control and target PSCs with an active area of 0.043 cm2. c) External quantum efficiencies (EQE) spectra of control and target PSCs. d) Nyquist plots of the Electrical impedance spectra (EIS) for control and target PSCs at V = 0.9 V. e) Dark I–V curves for hole-only (ITO/MeO-4PACz/perovskite/Ag) devices based on the control and target PSCs. f) Influence of the light intensity on VOCof PSCs. Energy profiles of Pb2+and I?ion migration in g) control and h) target PSCs. The structures of the nudged elastic band (NEB) images in the initial, transition and final states are shown. i) Normalized PCE decay of control and target PSCs stored in ambient air.



文獻(xiàn)信息

Multistage Regulation Strategy via Fluorine-Rich Small Molecules for Realizing High-Performance Perovskite Solar Cells

Xiong Chang, Kunpeng Li, Yong Han, Guohua Wang, Zhishan Li, Dongfang Li, Fashe Li, Xing Zhu, Hua Wang, Jiangzhao Chen, Tao Zhu
https://onlinelibrary.wiley.com/doi/10.1002/advs.202412557

產(chǎn)品鏈接-AAA太陽光模擬器-單燈.png

產(chǎn)品鏈接-paios.png

產(chǎn)品鏈接-LiABUIAABUIABAEGAAgofqVugYo9IeuSTDaDTiwAwBAEGAAgofqVugYo9IeuSTDaDTiwAwABUIABAEGAAgofqVugYo9IeuS


- 產(chǎn)品咨詢及購買請(qǐng)聯(lián)系我們 -



分享到:
巨力光電(北京)科技有限公司
聯(lián)系郵箱 info@giantforce.cn
聯(lián)系電話
北京分機(jī)1:010-57103010
北京分機(jī)2:010-57299942
北京公司通訊地址:北京市通州區(qū)新華西街58號(hào)院萬達(dá)廣場(chǎng)B座1311
武漢公司通訊地址:武漢市洪山區(qū)關(guān)山街道虎泉街永利國際2714
|     京ICP備19048123號(hào)-2        ?2023 巨力光電(北京)科技有限公司 版權(quán)所有                   友情鏈接:化工儀器網(wǎng)      儀器信息網(wǎng)  
北京李經(jīng)理
18911365393
北京劉經(jīng)理
18911365396
武漢劉經(jīng)理
18911365395